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Abstract

Torsional and/or bending rigidities have been used as the key performance measure in conventional beam section

design practice. The goal of this investigation is, however, to show that a so-called distortional rigidity also affects

significantly the section shapes especially in the design of thin-walled closed beam sections. Though several investi-

gations have analyzed complicated deformations of thin-walled beams such as distortion and warping, this paper is

perhaps the first report to show how the design of thin-walled beam section shapes is affected by the additional con-

sideration of the distortional rigidity. To illustrate this, several beam section optimization problems are considered.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Most researches on beam section design have been focus on the maximization of torsional and bending

rigidities (Banichuk and Karihaloo, 1976; Banichuk, 1976; Dems, 1980; Hou and Chen, 1985; Kim and

Kim, 2000b; Mota Soares et al., 1984; Parbery and Karihaloo, 1980; Schramm and Pilkey, 1993; Schramm

et al., 1995). Many of practically important beam sections have been successfully optimized with these

rigidities. However, the section design considering torsional and/or bending rigidities alone often yields

trivial section shapes especially when thin-walled closed sections are concerned. For example, the torsional

rigidity maximization of a thin-walled closed section yields a square section if sections are restricted to

remain quadrilateral.
In designing section shapes of thin-walled closed beams, it is worth noting that torsional and bending

deformations are usually coupled with warping and distortional deformations that can affect significantly
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the structural resistance of a beam. Because of the physical significance of warping and distortional de-

formations in thin-walled closed beams, many investigations are dedicated for the analysis of these de-

formations (Boswell and Zhang, 1984; Hsu et al., 1995; Kim and Kim, 1999, 2000a, 2001; Kim et al., 2002;

Tesar, 1998; Wright et al., 1968). Pavazza (2002) has recently investigated the load distribution problem in
thin-walled beams subjected to bending with respect to the cross-section distribution.

In spite of rich literature on the theory and analysis of these deformations, attempts to consider these

deformations in section design are rare; Kim and Kim (2002) have recently considered the topology op-

timization of a beam under torsion and distortion. Though no notion of a distortional rigidity was in-

troduced in Kim and Kim (2002), the importance of the distortional deformation was addressed in finding

the optimal position of walls inside thin-walled closed sections.

The objective of this paper is to show that the design of thin-walled beam sections may be significantly

affected by the additional consideration of a so-called distortional rigidity. To this end, we introduce the
notion of a distortional rigidity and give its precise definition based on a higher-order thin-walled closed

beam theory developed by Kim and Kim (1999, 2000a, 2001) To show the effect of the distortional rigidity

on the optimized section shape, we construct a composite-objective function considering both the torsional

and distortional rigidities. The optimized sections obtained with the composite-objective function are

compared with those obtained with a single objective function considering only the torsional rigidity. Since

the mean bending rigidity is always greater or equal to the torsional rigidity, only the torsional rigidity will

be considered.

In Section 2, we review a thin-walled closed beams theory (Kim and Kim, 1999, 2000a, 2001) handling
coupled deformations of torsion, warping and distortion. Based on this theory, we define the distortional

rigidity in Section 3 by considering the limiting case of dominant distortional deformation. In Section 4,

several case studies are investigated in the shape optimization framework of closed beam sections. This

section will be following by conclusion.

2. Thin-walled closed beam theory

A one-dimensional theory of thin-walled closed beams for quadrilateral cross sections will be briefly

given (see Kim and Kim, 1999, 2000a for more details). Fig. 1 shows the geometry of a quadrilateral thin-

walled beam. The tangential coordinate s is measured along the contour of the cross section, and different

origins are used for each wall. The normal coordinate n directs outwards from the contour. The dis-

placements of a point on the middle line of the wall are expressed in terms of the normal un, tangential us

and axial uz components. The wall thickness is assumed to be constant.
If beam deformation measures are represented by the amounts of axial rotation hðzÞ, torsional warping

U hðzÞ, distortion vðzÞ and distortional warping U vðzÞ, the shell displacements are written as:

usðs; zÞ ¼ wh
s ðsÞhðzÞ þ wv

s ðsÞvðzÞ
unðs; zÞ ¼ wh

nðsÞhðzÞ þ wv
nðsÞvðzÞ

uzðs; zÞ ¼ wUh

z ðsÞU hðzÞ þ wUv

z ðsÞU vðzÞ
ð1Þ

where wðsÞ are the functions of s describing the section deformations of the middle line of a thin-walled

beam cross section in the n–s plane per unit value of h, U h, v and U v.
The section deformation associated with hðzÞ is simply written as

wh
s ðsÞ ¼ rðsÞ wh

nðsÞ ¼ �li þ si ð2Þ

where rðsÞ is the normal distance from the shear center O to the tangent of a point on the contour, and li
denotes the distance from the origin of the si coordinate on the ith wall to the point Ni (see Fig. 1).
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The procedure to determine the tangential (wv
s ) and normal (wv

n) displacements in components of the
middle line corresponding to distortion vðzÞ is not so straightforward for general quadrilateral sections.

Instead of giving the detailed analytic procedure (which can be found in Kim and Kim, 1999), we merely

illustrate a distortional deformation of a general quadrilateral section in Fig. 2.

For warping, there are two warping deformations associated with torsion and distortion, 1 which are

usually referred to as a torsional and distortional warping. The torsional warping function is written as

Fig. 1. Geometry of a quadrilateral thin-walled beam.

Fig. 2. Distortional shape of the centerline of a quadrilateral cross section.

1 To simplify analysis, torsional and distortional warping deformations in quadrilateral sections may be assumed identical as in Kim

and Kim (1999).
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wUh

z ðsÞ ¼
Z

ðrn � rÞdsþ wUh

z0 ð3Þ

where rn is defined as rn ¼ ð
H
rds=

H
dsÞ ¼ ð2A=

H
dsÞ with A, the area enclosed by the beam cross section.

The constant wU
z0 is determined from the condition that the average axial displacement of the torsional

warping must vanish.

Similarly, the distortional warping function is given as

wUv

z ðsÞ ¼
Z

wv
s ðsÞ

h
� �wwv

s

i
dsþ wUv

z0 ð4Þ

where �wwv
s is defined as �wwv

s ¼ ð
H

wv
s ðsÞds=

H
dsÞ and wUv

z0 is also determined from the vanishing condition of

the average axial displacement of the distortional warping.

Using the shell displacements expressed by Eq. (1), non-vanishing three-dimensional strains can be

found. Using the resulting strains, the potential energy P may be obtained

P ¼ 1

2

Z
rij�ij dV �

Z
ðpuz þ qusÞdV þ Pb ð5Þ

where p and q denote external axial and tangential forces, respectively and Pb represents the potential due

to Neumann-type boundary conditions. Integrating Eq. (5) over the the beam cross-section A, we can

obtain the following one-dimensional form of the system potential energy:

P ¼ 1

2

Z
Mzh

0
h

þ Qv0 þ BUhU h0 þ BUvU v0 þ BUhU h þ BUvU v þ Qv
i
dz

�
Z

ðp1U h þ p2U v þ q1h þ q2vÞdzþ Pb ð6Þ

In Eq. (6), ð Þ0 implies the differentiation with respect to z and p1, p2, q1 and q2 are one dimensional load
terms. The definitions of Mz etc. are

Mz � G½b2U h þ b8U v þ b	1h
0 þ b4v0


Q � G½b3U h þ b9U v þ b4h
0 þ b5v0


BUh � E1½a1U h0 þ a2U v0 


BUv � E1½a2U h0 þ a3U v0 


BUh � G½b1U h þ b7U v þ b2h
0 þ b3v0


BUv � G½b7U h þ b6U v þ b8h
0 þ b9v0


Q � E1cv

ð7Þ

where E1 ¼ Eð1� m2Þ. Note that E, G and m are Young�s, shear modulus and Poisson�s ratio.
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The coefficients introduced in Eq. (7) are defined as

a1 ¼
Z

A
wUh

z

� �2
dA; a2 ¼

Z
A

wUh

z wUv

z dA; a3 ¼
Z

A
wUv

z

� �2
dA

b	1 ¼
Z

A
wh

s

� �2
dA; b1 ¼

Z
A

dwUh

z

ds

 !2

dA; b2 ¼
Z

A
wh

s

dwUh

z

ds
dA

b3 ¼
Z

A
wv

s

dwUh

z

ds
dA; b4 ¼

Z
A

wh
sw

v
s dA; b5 ¼

Z
A

wv
s

� �2
dA

b6 ¼
Z

A

dwUv

z

ds

� �2

dA; b7 ¼
Z

A

dwUh

z

ds
dwUv

z

ds
dA; b8 ¼

Z
A

wh
s

dwUv

z

ds
dA

b9 ¼
Z

A
wv

s

dwUv

z

ds
dA; c ¼

Z
A
n2

d2wv
n

ds2

� �2

dA

ð8Þ

The coefficients b1 and b2 are related as b2 ¼ �b1.

3. Distortional rigidity of thin-walled closed beams

In this section, we propose the notion of a distortional rigidity. As the distortional rigidity has some

analogy with the torsional rigidity, we begin our discussion with the torsional rigidity. Although the tor-

sional rigidity is well known, the understanding of the procedure to derive the torsional rigidity from the

theory given in Section 2 is important to understand the distortional rigidity.

When neglecting the in-plane distortion v and the associated warping U v, the total potential energy in

Eq. (6) can be expressed in terms of rotation h and torsional warping U h:

P ¼ 1

2

Z
½Mzh

0 þ BUhU h0 þ BUhU h
dz�
Z

ðp1U h þ q1hÞdzþ Pb ð9Þ

where

Mz ¼ G½b2U h þ b	1h
0
 ¼ G½�b1U h þ b	1h

0

BUh ¼ E1a1U h0

BUh ¼ G½b1U h þ b2h
0
 ¼ G½b1U h � b1h

0

ð10Þ

In Eq. (10), we used b2 ¼ �b1. If we consider the case of U h ¼ h0 (this condition is used for uniform

torsion problems), Eq. (10) becomes

Mz ¼ G½b	1 � b1
h0 ¼ Cth
0 ð11Þ

From Eq. (11), the torsional rigidity Ct is identified as Gðb	1 � b1Þ. Note that Gðb	1 � b1Þ reduces to the

well-known expression of the torsional rigidity of thin-walled closed beams

Gðb	1 � b1Þ ¼
4GtA

2H
ds

ð12Þ

To introduce the distortional rigidity, it is convenient to consider the case where the rotation h and the

rotational warping U h vanish. In this case, the total potential energy (6) reduces to

P ¼ 1

2

Z
½Qv0 þ BU v0 þ BU v þ Qv
dz�

Z
ðp2U v þ q2vÞdzþ Pb ð13Þ
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where

Q ¼ G½b9U v þ b5v0

BUv ¼ E1a3U v0

BUv ¼ G½b6U v þ b9v0

Q ¼ E1cv

ð14Þ

Following the procedure used to derive the relation b2 ¼ �b1, we find that

b9 ¼ �b6 ð15Þ
In the case of U v ¼ v0 (similar to U h ¼ h0 for torsion), the following equilibrium equation is obtained

(Eq. (15) is used):

E1a3v0000 � Gbv00 þ E1cv ¼ pex ð16Þ
where b ¼ b5 � b6 and pex denotes the external load. This equation is similar to the governing equation for

beams on elastic foundations (BEF) in which E1c is equivalent to the elastic foundation stiffness. Boswell
and Zhang (1984) and Tesar (1998) derived a similar equation for distortion problems. Wright et al. (1968)

and Hsu et al. (1995) addressed the usefulness of the analogy between this distortion problem and the BEF

problem.

In the limiting case of the uniform distortion (v0 ¼ 0), the only stiffness of the beam is due to E1c.
Consequently we propose to define the distortional rigidity D as

D ¼ E1c ¼ E1

Z
A
n2

d2wv
n

ds2

� �2

dA ð17Þ

Referring to Eq. (16), one can see that the distortional rigidity D is the main rigidity against uniform

distortion.

4. Effects of distortional rigidity

In this section, closed beam section optimization problems are setup in order to illustrate the effects of

the distortional rigidity in design of beam sections. First, we deal with section optimization in single-cell
cross sections and then in multi-cell cross sections. The importance of the distortional rigidity may be best

revealed in section design optimization.

4.1. Single-cell cross section

We first consider the significance of the distortional rigidity in single-cell cross sections. The mathe-

matical statement of beam section optimization problems can be given as:

Minimize

f ¼ �wc logCt � wd logD ð18Þ

Subject to

XN
i¼1

bi

 !
� Lc ¼ 0 ð19Þ
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In Eq. (18), wc and wd are factors adjusting relative weightings between Ct and D. Since the torsional

rigidity Ct is always smaller than the mean bending rigidity (see, e.g., Kim and Kim, 2002), no bending

rigidity is considered explicitly in the objective function (18). The torsional rigidity for thin-walled closed

beams is defined in Eq. (12).
Eq. (19) represents the beam mass constraint where Lc is the total length of the beam centerline. As-

suming that all walls have the same thickness, the prescribed total wall length Lc is equivalent to the total

mass density of a beam. The coordinates ðxi; yiÞ of the ith corner of a beam section are used as design

variables, and each wall length bi is subject to side constraints,

bl < bi < bu ði ¼ 1; . . . ; neÞ ð20Þ

where bl and bu are the lower and upper bounds of bi, respectively and ne is the total number of edges. For
all design problems considered in this work, the modified feasible direction method (Vanderplaats, 1999) is

employed. Since the present investigation is mainly concerned with the investigation of the effects of the

distortional rigidity, no effort is made to carry out the analytic sensitivity analysis. Instead, we simply take a

straightforward finite difference scheme, where of =oxi and of =oyi are replaced by Df =Dxi and Df =Dyi with
Dxi ¼ Dyi ¼ 0:01.

When the distortional rigidity is not considered, the conventional objective function only considering the

torsional rigidity is considered.

f1 ¼ �Ct; or f1 ¼ � logCt ð21Þ

The advantage of using the logarithmic function was reported in Kim and Kim (2002).

Example 1 (Quadrilateral section design). As the first problem, we consider the design optimization of a

quadrilateral beam section in Fig. 3. The numerical data for the present problem are

Lc ¼ 40 mm; wc ¼ 0:002; wd ¼ 0:0031; bl ¼ 0 mm; bu ¼ 40 mm

An additional constraint that a beam section remains symmetric with respect to the y-axis is also imposed.

Figs. 4(a) and (b) show the optimized cross section shapes with f1 and f , respectively. If we consider only
the torsional rigidity for optimization, the resulting section becomes square as anticipated. This result is

obvious because a circular cross section has the largest torsional rigidity and the result shown in Fig. 4(a) is

the quadrilateral section closest to a circular section. However, the optimized section in Fig. 4(b) obtained

Fig. 3. A rectangular single-cell section (E ¼ 2:068� 1011 N/m2, G ¼ 8:019� 1010 N/m2, t ¼ 1 mm).
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by considering both torsional and distortional rigidities is a trapezoidal section. This result shows that a

trapezoidal section has a larger resistance to section distortion than a rectangular section, and this is why

trapezoidal sections are common in bridge construction.

Fig. 5 shows the history of the composite-objective function f as well as the history of the corresponding
torsional and distortional rigidities. It is worth examining the structural performance of the present

trapezoidal section over a square section under a couple of the same magnitude applied at one end of the

thin-walled beam (see Fig. 6). The maximum shear and axial stresses in both beams are calculated using

plate finite elements provided by I-DEAS (I-DEAS, 1993). For this problem, E ¼ 2:068� 1011 N/m2,

G ¼ 8:019� 1010 N/m2 and the density of q ¼ 7820 kg/m3 are used. Table 1 shows the effectiveness of the

trapezoidal section over the square section. In addition to the stress analyses, free-vibration analyses for the

two beams having free ends are carried out. The lowest three eigenfrequencies are compared in Table 2. For

reference, Fig. 7 shows the first two eigenmodes of the square box beam, which are dominated by dis-
tortional deformations.

Fig. 4. Optimized section shapes using (a) f1 for torsional rigidity maximization and (b) f for balanced torsional and distortional

rigidity maximization.

Fig. 5. (a) The history of the objective function f and (b) the histories of the corresponding torsional and distortional rigidities for a

single-cell section shown in Fig. 4(b).
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The results given in Tables 1 and 2 show that the consideration of the distortional rigidity affects sig-

nificantly the section design. Unless applied loads induce pure torsional (or bending) deformation in beams,
the consideration of the distortional rigidity can improve quite substantially the structural performance of

thin-walled closed beams.

Example 2 (General section design). As the next example, a thin-walled section shown in Fig. 8(a) is opti-

mized for Lc ¼ 40 mm in Eq. (18). The design optimization using f (wc ¼ 1, wd ¼ 2:5) and f1 will be studied.
The optimized designs based on f1 and f are shown in Fig. 8(a) and (b), respectively. The histories of the

objective function, the torsional and distortional rigidities for Fig. 8(c) are plotted in Fig. 9.

This example reveals the significant effects of the distortional deformations in the section shape opti-
mization. In Fig. 10, the present section shape obtained in Fig. 8(c) is compared with a center-pillar section

of a typical passenger car. Since two sections in Fig. 10 have a similar section configuration, it can be

deduced that pillar sections in automobiles can effectively resist against sectional distortion. For this

problem, it may be worth investigating the effects of the weighting factors wd on the optimized shapes. The

results are shown in Fig. 11.

4.2. Multi-cell section design

In this subsection, the design of multi-cell sections considering the distortional rigidity is considered. To

simplify discussions, we will be mainly focusing on double-cell quadrilateral sections, but the present ap-
proach can be extended to general multi-cell sections.

Fig. 6. Cantilevered box beams having (a) a square and (b) a trapezoidal section under a couple having the same magnitude

M ¼ 1:0� 10�5 Nm (L ¼ 50 mm).

Table 1

Maximum shear stress smax and axial stress ðrzÞmax (unit: N/m2)

Section type smax ðrzÞmax

Square (Fig. 6(a)) 282.0 287

Trapezoid (Fig. 6(b)) 256.0 124

Table 2

Eigenfrequencies of square and trapezoidal box beams

Section Distortional mode 1 Distortional mode 2 Torsional mode

Square (Fig. 6(a)) 1.40 kHz 1.42 kHz 2.75 kHz

Trapezoid (Fig. 6(b)) 1.65 kHz 1.62 kHz 2.60 kHz
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Fig. 7. (a) The first and (b) the second eigenmode of a square box beam with free ends.

Fig. 8. A general thin-walled cross section (a) before optimization, (b) design optimization with f1, and (c) with f .
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The torsional rigidity Cm
t of a double-cell section shown in Fig. 12 can be found by using the following

equations (see, e.g., Oden (1967)):

Mz ¼ Cm
t am ¼

X2
i¼1

2qiAi ð22Þ

Fig. 9. (a) The history of the objective function f and (b) the histories of the corresponding torsional and distortional rigidities for a

general thin-walled section shown in Fig. 8(c).

Fig. 10. The comparison of the present result (black) and a center pillar section of a typical pillar passenger car (gray).
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am ¼ 1

2GA1

q1

I
s1

ds=t
�

� q2

Z
s12

ds=t
�

ð23Þ

am ¼ 1

2GA2

q2

I
s2

ds=t
�

� q1

Z
s21

ds=t
�

ð24Þ

Fig. 11. The effects of the weighting factors wd on the optimization section shapes (wc in f is fixed as 1.0).

Fig. 12. A double-cell cross section.
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where am is the twist per unit length and qi and Ai denote the shear flow and the enclosed area of the ith cell,

respectively. Eqs. (23) and (24) represent the condition of the single-valuedness of the axial displacement of

the torsional warping in double cells. In Eqs. (23, 24),
R
si
denotes the contour integration around the ith cell

and
R
sij
represents the integration along the wall common to the ith and jth cells. The positive direction of sij

is designated in Fig. 12.

In determining the distortional rigidity of multi-cell sections, we should be aware of the existence of two

distortional deformations in a double-cell quadrilateral section. (There is only one distortional mode in a

single-cell quadrilateral section.) Kim and Kim (2001) have recently presented a step-by-step procedure to

determine distortional deformation shapes for multi cells. Following the procedure given in Kim and Kim

(2001), two distortional deformation modes shown in Fig. 13(a) are obtained. One may also find the dis-

tortional rigidities for a double-cell section by extending the method used for a single-cell section.

Denoting the two distortional rigidities of a double-cell section by Dm
1 and Dm

2 , one may construct an
objective function for multi-cell section optimization problems as

f m ¼ �wm
t logCm

t � wm
d1
logDm

1 � wm
d2
logDm

2 ð25Þ

In this case, however, adjusting the relative ratio wd1=wd2 of the weighting factors for the distortional ri-

gidities is obscure. Based on this observation, we approximate each distortional deformation mode of the
double-cell section as the combination of the distortional deformation of a single-cell section (see Fig.

13(b)). Since the total distortional rigidity of a multi-cell section is governed by the minimum rigidity

between the distortional rigidities of two separate single cells, we propose to employ the following form of

the objective function for multi-cell sections:

f m ¼ �wm
t logCm

t � wm
d logDmin ð26Þ

where

Dmin ¼ minðD1;D2Þ ð27Þ

Fig. 13. (a) Two distortional modes of a double-cell cross section, and (b) decomposed modes into those of single cells.
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In Eq. (27), Di denotes the distortional rigidity of the ith single cell defined as

Di ¼ E1ci ¼ E1

Z
Ai

n2
d2wv

ni

ds2

� �2

dA ð28Þ

The performance of f m in Eq. (26) will be compared with that with the conventional objective function f1
given by Eq. (21).

Example 3 (Double-cell quadrilateral section design). A double-cell section design problem shown in Fig.

14(a) will be considered as an example. In this case, we are interested in finding the optimal location of the
reinforcing wall in symmetric cross sections.

Fig. 14. A double-cell cross section (a) before optimization, (b) after the torsional rigidity maximization and (c) after the optimization

to maximize the torsional and distortional rigidities (wc ¼ 1:0 and wd ¼ 3:0).

Fig. 15. (a) The history of the objective function f m and (b) the histories of the corresponding torsional and distortional rigidities for

the design depicted in Fig. 14(c).
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The value Lc for the constraint equation (19) is set to be 55 mm. If f1 in Eq. (21) is used as the objective

function, the resulting beam section becomes a single-cell section as shown in Fig. 14(b); the reinforcing

wall is merely pushed to a side member. This result is trivial as the design optimization using the torsional

rigidity alone does not provide any practically useful information.
However, the section optimization using the composite-objective function f m considering both the

torsional and distortional rigidities yields a satisfactory result as shown in Fig. 14(c). The reinforcing wall in

Fig. 14(c) does not help increase the torsional rigidity, but the distortional rigidity. Fig. 15 shows the history

of the objective function f m and the histories of the corresponding torsional and distortional rigidities. Note

that the section shown in Fig. 14(c) is indeed a section used in wide bridges. This problem also exemplifies

the significant effects of the distortional rigidity in thin-walled closed beam section design. The use of a

composite-objective function consisting of torsional and distortional rigidities in practical applications is

expected to provide very useful design information.

5. Conclusion

Starting from a higher-order thin-walled closed beam theory, a notion of the distortional rigidity is

introduced. The significant effects of the distortional rigidity in the design of thin-walled closed beam

sections have been revealed by several case studies. In the course of this investigation, a new composite-

objective function considering both the torsional and distortional rigidities for multi-cell sections is also

proposed.
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