IITEIIITIOIAL HIUIIIL OF

SOLIDS a
STHIIGTIIIIES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 40 (2003) 633-648

Significance of distortion in thin-walled
closed beam section design

Seok Heo ?, Jin Hong Kim °, Yoon Young Kim **

& School of Mechanical and Aerospace Engineering, Seoul National University Shinlim-Dong,
San 56-1, Kwanak-Gu, Seoul 151-742, South Korea
® Vehicle Development and Analysis Team, Research and Development Division for Hyundai Motor Company and Kia
Motors Corporation, 772-1, Changduk-Dong, Hwaseong-Si, Kyonggi-Do 445-706, South Korea

Received 28 March 2002; received in revised form 19 September 2002

Abstract

Torsional and/or bending rigidities have been used as the key performance measure in conventional beam section
design practice. The goal of this investigation is, however, to show that a so-called distortional rigidity also affects
significantly the section shapes especially in the design of thin-walled closed beam sections. Though several investi-
gations have analyzed complicated deformations of thin-walled beams such as distortion and warping, this paper is
perhaps the first report to show how the design of thin-walled beam section shapes is affected by the additional con-
sideration of the distortional rigidity. To illustrate this, several beam section optimization problems are considered.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Most researches on beam section design have been focus on the maximization of torsional and bending
rigidities (Banichuk and Karihaloo, 1976; Banichuk, 1976; Dems, 1980; Hou and Chen, 1985; Kim and
Kim, 2000b; Mota Soares et al., 1984; Parbery and Karihaloo, 1980; Schramm and Pilkey, 1993; Schramm
et al., 1995). Many of practically important beam sections have been successfully optimized with these
rigidities. However, the section design considering torsional and/or bending rigidities alone often yields
trivial section shapes especially when thin-walled closed sections are concerned. For example, the torsional
rigidity maximization of a thin-walled closed section yields a square section if sections are restricted to
remain quadrilateral.

In designing section shapes of thin-walled closed beams, it is worth noting that torsional and bending
deformations are usually coupled with warping and distortional deformations that can affect significantly
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the structural resistance of a beam. Because of the physical significance of warping and distortional de-
formations in thin-walled closed beams, many investigations are dedicated for the analysis of these de-
formations (Boswell and Zhang, 1984; Hsu et al., 1995; Kim and Kim, 1999, 2000a, 2001; Kim et al., 2002;
Tesar, 1998; Wright et al., 1968). Pavazza (2002) has recently investigated the load distribution problem in
thin-walled beams subjected to bending with respect to the cross-section distribution.

In spite of rich literature on the theory and analysis of these deformations, attempts to consider these
deformations in section design are rare; Kim and Kim (2002) have recently considered the topology op-
timization of a beam under torsion and distortion. Though no notion of a distortional rigidity was in-
troduced in Kim and Kim (2002), the importance of the distortional deformation was addressed in finding
the optimal position of walls inside thin-walled closed sections.

The objective of this paper is to show that the design of thin-walled beam sections may be significantly
affected by the additional consideration of a so-called distortional rigidity. To this end, we introduce the
notion of a distortional rigidity and give its precise definition based on a higher-order thin-walled closed
beam theory developed by Kim and Kim (1999, 2000a, 2001) To show the effect of the distortional rigidity
on the optimized section shape, we construct a composite-objective function considering both the torsional
and distortional rigidities. The optimized sections obtained with the composite-objective function are
compared with those obtained with a single objective function considering only the torsional rigidity. Since
the mean bending rigidity is always greater or equal to the torsional rigidity, only the torsional rigidity will
be considered.

In Section 2, we review a thin-walled closed beams theory (Kim and Kim, 1999, 2000a, 2001) handling
coupled deformations of torsion, warping and distortion. Based on this theory, we define the distortional
rigidity in Section 3 by considering the limiting case of dominant distortional deformation. In Section 4,
several case studies are investigated in the shape optimization framework of closed beam sections. This
section will be following by conclusion.

2. Thin-walled closed beam theory

A one-dimensional theory of thin-walled closed beams for quadrilateral cross sections will be briefly
given (see Kim and Kim, 1999, 2000a for more details). Fig. 1 shows the geometry of a quadrilateral thin-
walled beam. The tangential coordinate s is measured along the contour of the cross section, and different
origins are used for each wall. The normal coordinate n directs outwards from the contour. The dis-
placements of a point on the middle line of the wall are expressed in terms of the normal u,, tangential u;
and axial u, components. The wall thickness is assumed to be constant.

If beam deformation measures are represented by the amounts of axial rotation 6(z), torsional warping
U’(z), distortion y(z) and distortional warping U*(z), the shell displacements are written as:

uy(5,2) = ¥ (5)0(2) + ¥A(5)1(2)
(s,2) = Y2(5)0(2) + Y ()x(2) (1)
u(s,2) = Yy (5) U (2) + ¥ (5)U%(2)

where (s) are the functions of s describing the section deformations of the middle line of a thin-walled
beam cross section in the n—s plane per unit value of 0, U’, y and U%.
The section deformation associated with 6(z) is simply written as

tﬂf(s) = r(s) lﬂg(s) =—I;+s (2)

where r(s) is the normal distance from the shear center O to the tangent of a point on the contour, and /,
denotes the distance from the origin of the s; coordinate on the ith wall to the point &; (see Fig. 1).
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U, \ ith wall

Fig. 1. Geometry of a quadrilateral thin-walled beam.

deformed

undeformed

\

Fig. 2. Distortional shape of the centerline of a quadrilateral cross section.

The procedure to determine the tangential (#) and normal (%) displacements in components of the
middle line corresponding to distortion y(z) is not so straightforward for general quadrilateral sections.
Instead of giving the detailed analytic procedure (which can be found in Kim and Kim, 1999), we merely
illustrate a distortional deformation of a general quadrilateral section in Fig. 2.

For warping, there are two warping deformations associated with torsion and distortion, ! which are
usually referred to as a torsional and distortional warping. The torsional warping function is written as

! To simplify analysis, torsional and distortional warping deformations in quadrilateral sections may be assumed identical as in Kim
and Kim (1999).
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W (s) = / (s — ) ds + Y (3)

where r, is defined as r, = (§rds/ ¢ ds) = (24/ ¢ ds) with 4, the area enclosed by the beam cross section.
The constant lpi{) is determined from the condition that the average axial displacement of the torsional
warping must vanish.

Similarly, the distortional warping function is given as

0 = [ [pre) - as )

where y/ is defined as Y/ = (§y/(s)ds/ § ds) and ¥ is also determined from the vanishing condition of
the average axial displacement of the distortional warping.

Using the shell displacements expressed by Eq. (1), non-vanishing three-dimensional strains can be
found. Using the resulting strains, the potential energy I1 may be obtained

1

where p and ¢ denote external axial and tangential forces, respectively and [T}, represents the potential due
to Neumann-type boundary conditions. Integrating Eq. (5) over the the beam cross-section 4, we can
obtain the following one-dimensional form of the system potential energy:

1 ' : P .
H:E/ [MZH + Oy +ByU” + By, U” +ByoU’ + By, U+ Oy | dz

—/@1U0+P2UX+919+Q2X)dZ+Hb (6)
In Eq. (6), ( )’ implies the differentiation with respect to z and p, p», ¢1 and ¢, are one dimensional load
terms. The definitions of M, etc. are

M. = G[byU" 4 by U* + b0 + by

0 = G[b3U" + boU* + byl + bsy']

BUt) = E1 [a1 UU/ + azUX/]

Bur = E\[a;U" 4 a3U”] (7)

Byo = GlbiU’ + bU” + byt + byy/]

By = G[b7UH + bsU” + bs + boy/]

Q=Ecy

where E; = E(1 —v?). Note that E, G and v are Young’s, shear modulus and Poisson’s ratio.
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The coefficients introduced in Eq. (7) are defined as

o= [ (W) ar = [urvran a= [ )

, dlﬁU“ 2 dlﬁUU
* 0 _ z — 0 z
i fwran e [(%) o e [ua

A
U()
b= [ ean b= [wiwan b= [0 ®)
A dS A y

7\ 2 0 7 7
_ dy! [yl dy! _ o dy?
bs 7/A ( ds ) dd, by 7/A ds ds dd, by 7/Aws ds dd

LAy dcyry’
— V4 z — 2 n
bg—/AlpS R dd4, ¢ /An(dsz)dA

The coefficients b; and b, are related as b, = —b;.

3. Distortional rigidity of thin-walled closed beams

In this section, we propose the notion of a distortional rigidity. As the distortional rigidity has some
analogy with the torsional rigidity, we begin our discussion with the torsional rigidity. Although the tor-
sional rigidity is well known, the understanding of the procedure to derive the torsional rigidity from the
theory given in Section 2 is important to understand the distortional rigidity.

When neglecting the in-plane distortion y and the associated warping U”, the total potential energy in
Eq. (6) can be expressed in terms of rotation 0 and torsional warping U":

= % /[MZB' +ByoU" +BpU’)dz — /(p1 U’ + ¢10)dz + 1T, 9)
where
M. = Glb,U’ + b}0'] = G[-b, U’ + b}0]
By = Eya,U" (10)
Byo = GlbU" + b,0') = G[b, U’ — b,0]
In Eq. (10), we used b, = —b,. If we consider the case of U’ = ¢’ (this condition is used for uniform
torsion problems), Eq. (10) becomes
M, = G[b} — bi]0' = C0' (11)

From Eq. (11), the torsional rigidity C, is identified as G(b; — b;). Note that G(b} — b;) reduces to the
well-known expression of the torsional rigidity of thin-walled closed beams

4Gid
=i

To introduce the distortional rigidity, it is convenient to consider the case where the rotation 6 and the
rotational warping U? vanish. In this case, the total potential energy (6) reduces to

G(by = b1) (12)

1 P, A
HZE/[QX'+BUX +BU‘+Qx]dz—/(p2U‘+Q2X)dz+Hb (13)
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where

0 = G[byU” + bsy]

By: = EyasU”
_ ] , (14)
By, = G[b(,U/‘ + ng]
0 =Ecy
Following the procedure used to derive the relation b, = —by, we find that
by = —bg (15)

In the case of U% = y' (similar to U’ = ¢ for torsion), the following equilibrium equation is obtained
(Eq. (15) is used):

Eiasy"" — Gby" + Eicy = pex (16)

where b = bs — b and pe, denotes the external load. This equation is similar to the governing equation for
beams on elastic foundations (BEF) in which E;c is equivalent to the elastic foundation stiffness. Boswell
and Zhang (1984) and Tesar (1998) derived a similar equation for distortion problems. Wright et al. (1968)
and Hsu et al. (1995) addressed the usefulness of the analogy between this distortion problem and the BEF
problem.

In the limiting case of the uniform distortion (' = 0), the only stiffness of the beam is due to Ejc.
Consequently we propose to define the distortional rigidity D as

2.0 2
D_Elc_El/An2<%) d4 (17)

Referring to Eq. (16), one can see that the distortional rigidity D is the main rigidity against uniform
distortion.

4. Effects of distortional rigidity

In this section, closed beam section optimization problems are setup in order to illustrate the effects of
the distortional rigidity in design of beam sections. First, we deal with section optimization in single-cell
cross sections and then in multi-cell cross sections. The importance of the distortional rigidity may be best
revealed in section design optimization.

4.1. Single-cell cross section

We first consider the significance of the distortional rigidity in single-cell cross sections. The mathe-
matical statement of beam section optimization problems can be given as:

Minimize
f=-w.logC,—wylogD (18)

Subject to

<§N:b,-> —L,=0 (19)
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In Eq. (18), w, and w, are factors adjusting relative weightings between C; and D. Since the torsional
rigidity C; is always smaller than the mean bending rigidity (see, e.g., Kim and Kim, 2002), no bending
rigidity is considered explicitly in the objective function (18). The torsional rigidity for thin-walled closed
beams is defined in Eq. (12).

Eq. (19) represents the beam mass constraint where L. is the total length of the beam centerline. As-
suming that all walls have the same thickness, the prescribed total wall length L. is equivalent to the total
mass density of a beam. The coordinates (x;,);) of the ith corner of a beam section are used as design
variables, and each wall length b; is subject to side constraints,

b<b<b, (i=1,...,n,) (20)

where b, and b, are the lower and upper bounds of b;, respectively and #, is the total number of edges. For
all design problems considered in this work, the modified feasible direction method (Vanderplaats, 1999) is
employed. Since the present investigation is mainly concerned with the investigation of the effects of the
distortional rigidity, no effort is made to carry out the analytic sensitivity analysis. Instead, we simply take a
straightforward finite difference scheme, where 0f /0x; and 0f /0y, are replaced by Af/Ax; and Af/Ay; with
Ax; = Ay, = 0.01.

When the distortional rigidity is not considered, the conventional objective function only considering the
torsional rigidity is considered.

fi=-C, or fi=—-logC (21)
The advantage of using the logarithmic function was reported in Kim and Kim (2002).
Example 1 (Quadrilateral section design). As the first problem, we consider the design optimization of a
quadrilateral beam section in Fig. 3. The numerical data for the present problem are
L. =40 mm, w,=0.002, w;=0.0031, b =0mm, b, =40 mm

An additional constraint that a beam section remains symmetric with respect to the y-axis is also imposed.

Figs. 4(a) and (b) show the optimized cross section shapes with f; and f, respectively. If we consider only
the torsional rigidity for optimization, the resulting section becomes square as anticipated. This result is
obvious because a circular cross section has the largest torsional rigidity and the result shown in Fig. 4(a) is
the quadrilateral section closest to a circular section. However, the optimized section in Fig. 4(b) obtained

Unit : mm

15 .

4.8

Fig. 3. A rectangular single-cell section (E = 2.068 x 10" N/m?, G = 8.019 x 10'° N/m?, = 1 mm).
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Unit : mm
10
14.2

10 10
9.4 9.4

(a) 10 (b) 7

Fig. 4. Optimized section shapes using (a) f; for torsional rigidity maximization and (b) f for balanced torsional and distortional
rigidity maximization.

by considering both torsional and distortional rigidities is a trapezoidal section. This result shows that a
trapezoidal section has a larger resistance to section distortion than a rectangular section, and this is why
trapezoidal sections are common in bridge construction.

Fig. 5 shows the history of the composite-objective function f as well as the history of the corresponding
torsional and distortional rigidities. It is worth examining the structural performance of the present
trapezoidal section over a square section under a couple of the same magnitude applied at one end of the
thin-walled beam (see Fig. 6). The maximum shear and axial stresses in both beams are calculated using
plate finite elements provided by I-DEAS (I-DEAS, 1993). For this problem, E = 2.068 x 10'! N/m?,
G = 8.019 x 10'° N/m? and the density of p = 7820 kg/m? are used. Table 1 shows the effectiveness of the
trapezoidal section over the square section. In addition to the stress analyses, free-vibration analyses for the
two beams having free ends are carried out. The lowest three eigenfrequencies are compared in Table 2. For
reference, Fig. 7 shows the first two eigenmodes of the square box beam, which are dominated by dis-
tortional deformations.

Tosional Rigidity
—————— Distortional Rigidity
= -0.01fF
8 8E+10|
=
Q
g 1E+08 2
[ & TE+10 7 2
0 3 '8
- ) 5
£ -0.0105 2 6EH10 9.6E+07
2 g g
S 2 £
= 2
-0.011} A
4E+10 8.8E+07
1 1 1 ] 1 1 1
0 1 2 3 4 0 1 2 3 4
(@) Iteration Number (b) Iteration Number

Fig. 5. (a) The history of the objective function f and (b) the histories of the corresponding torsional and distortional rigidities for a
single-cell section shown in Fig. 4(b).
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1 1

(@) (b)

Fig. 6. Cantilevered box beams having (a) a square and (b) a trapezoidal section under a couple having the same magnitude
M =1.0 x 107> Nm (L = 50 mm).

Table 1

Maximum shear stress T, and axial stress (o.),,,, (unit: N/m?)
Section type Tmax (02) max
Square (Fig. 6(a)) 282.0 287
Trapezoid (Fig. 6(b)) 256.0 124

Table 2

Eigenfrequencies of square and trapezoidal box beams
Section Distortional mode 1 Distortional mode 2 Torsional mode
Square (Fig. 6(a)) 1.40 kHz 1.42 kHz 2.75 kHz
Trapezoid (Fig. 6(b)) 1.65 kHz 1.62 kHz 2.60 kHz

The results given in Tables 1 and 2 show that the consideration of the distortional rigidity affects sig-
nificantly the section design. Unless applied loads induce pure torsional (or bending) deformation in beams,
the consideration of the distortional rigidity can improve quite substantially the structural performance of
thin-walled closed beams.

Example 2 (General section design). As the next example, a thin-walled section shown in Fig. 8(a) is opti-
mized for L. = 40 mm in Eq. (18). The design optimization using f (w. = 1, w; = 2.5) and f; will be studied.
The optimized designs based on f; and f are shown in Fig. 8(a) and (b), respectively. The histories of the
objective function, the torsional and distortional rigidities for Fig. 8(c) are plotted in Fig. 9.

This example reveals the significant effects of the distortional deformations in the section shape opti-
mization. In Fig. 10, the present section shape obtained in Fig. 8(c) is compared with a center-pillar section
of a typical passenger car. Since two sections in Fig. 10 have a similar section configuration, it can be
deduced that pillar sections in automobiles can effectively resist against sectional distortion. For this
problem, it may be worth investigating the effects of the weighting factors w, on the optimized shapes. The
results are shown in Fig. 11.

4.2. Multi-cell section design

In this subsection, the design of multi-cell sections considering the distortional rigidity is considered. To
simplify discussions, we will be mainly focusing on double-cell quadrilateral sections, but the present ap-
proach can be extended to general multi-cell sections.
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Fig. 7. (a) The first and (b) the second eigenmode of a square box beam with free ends.

Fig. 8. A general thin-walled cross section (a) before optimization, (b) design optimization with f}, and (c) with f.
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Torsional Rigidity
—————— Distortional Rigidity
11
2.8E+11

o
o 220000 2
‘510.75 =
§ %‘ 2.6E+11 2
7 & 200000
2 105 A =
2z 10 = 24E+11 g
3 | 180000 &
B (@] =
o = T
©10.25 5 2.2E+11 160000 g

= A

10 2E+11
1 1 1 1 1 1 | 1 1 1 1 1 1 T 140000
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

(a) Iteration Number (b) Iteration Number

Fig. 9. (a) The history of the objective function /" and (b) the histories of the corresponding torsional and distortional rigidities for a
general thin-walled section shown in Fig. 8(c).

Present result with f; (black)

A center pillar section of a passenger car (gray)

Fig. 10. The comparison of the present result (black) and a center pillar section of a typical pillar passenger car (gray).

The torsional rigidity C;" of a double-cell section shown in Fig. 12 can be found by using the following
equations (see, e.g., Oden (1967)):

2
M. = C{"O(m — quizi (22)
i=1
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Fig. 11. The effects of the weighting factors w, on the optimization section shapes (w. in f is fixed as 1.0).
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|
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Fig. 12. A double-cell cross section.

1
o= ds/t—gq» | ds/t 23
Yo7 (ql P ds/ qz/m s/ ) -

" ds/t — ds/t 24
y 2%( ) as q/ s/) (24)
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where o is the twist per unit length and ¢; and 4; denote the shear flow and the enclosed area of the ith cell,
respectively. Egs. (23) and (24) represent the condition of the single-valuedness of the axial displacement of
the torsional warping in double cells. In Eqgs. (23, 24), f denotes the contour integration around the ith cell
and f represents the integration along the wall common to the ith and jth cells. The positive direction of s;;
is demgnated in Fig. 12.

In determining the distortional rigidity of multi-cell sections, we should be aware of the existence of two
distortional deformations in a double-cell quadrilateral section. (There is only one distortional mode in a
single-cell quadrilateral section.) Kim and Kim (2001) have recently presented a step-by-step procedure to
determine distortional deformation shapes for multi cells. Following the procedure given in Kim and Kim
(2001), two distortional deformation modes shown in Fig. 13(a) are obtained. One may also find the dis-
tortional rigidities for a double-cell section by extending the method used for a single-cell section.

Denoting the two distortional rigidities of a double-cell section by D} and D}, one may construct an
objective function for multi-cell section optimization problems as

S =—wi'log C7" —wjj log DY — wy; log Dy (25)

In this case, however, adjusting the relative ratio w,, /w,, of the weighting factors for the distortional ri-
gidities is obscure. Based on this observation, we approximate each distortional deformation mode of the
double-cell section as the combination of the distortional deformation of a single-cell section (see Fig.
13(b)). Since the total distortional rigidity of a multi-cell section is governed by the minimum rigidity
between the distortional rigidities of two separate single cells, we propose to employ the following form of
the objective function for multi-cell sections:

S =—wllog C{" — W log Diin (26)
where
Dmin = mil’l(Dth) (27)

747

mode 1

mode 2

(@) (b)

Fig. 13. (a) Two distortional modes of a double-cell cross section, and (b) decomposed modes into those of single cells.
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16.5° 6.5
5.1 1 - XS.I
17.5 7.5
Reinforcing Wall (@) (b)

[/

Fig. 14. A double-cell cross section (a) before optimization, (b) after the torsional rigidity maximization and (c) after the optimization
to maximize the torsional and distortional rigidities (w. = 1.0 and w,; = 3.0).

In Eq. (27), D; denotes the distortional rigidity of the ith single cell defined as

i
Di:E]Ci:El/AI’lz(dS;l) dA (28)

The performance of ™ in Eq. (26) will be compared with that with the conventional objective function f;
given by Eq. (21).

Example 3 (Double-cell quadrilateral section design). A double-cell section design problem shown in Fig.
14(a) will be considered as an example. In this case, we are interested in finding the optimal location of the
reinforcing wall in symmetric cross sections.

Torsional Rigidity
B s D,
___________ ])2
8 -3.5 1E+11 1 8E+08
§ . ) %‘
= K 1.6E+08 =
[i, 4 E) 8E+10 I =
) ) ~
2 < 1.4E408 —
= —
3 45 S 6E+10 g
o -4. S =
o) Z 1.2E+08 §
o 172)
= 4E+10 1E408 A
-5
] 1 1 ] 1 1 1 8E+07
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
(a) Iteration Number (b) Iteration Number

Fig. 15. (a) The history of the objective function /™ and (b) the histories of the corresponding torsional and distortional rigidities for
the design depicted in Fig. 14(c).
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The value L. for the constraint equation (19) is set to be 55 mm. If f in Eq. (21) is used as the objective
function, the resulting beam section becomes a single-cell section as shown in Fig. 14(b); the reinforcing
wall is merely pushed to a side member. This result is trivial as the design optimization using the torsional
rigidity alone does not provide any practically useful information.

However, the section optimization using the composite-objective function f™ considering both the
torsional and distortional rigidities yields a satisfactory result as shown in Fig. 14(c). The reinforcing wall in
Fig. 14(c) does not help increase the torsional rigidity, but the distortional rigidity. Fig. 15 shows the history
of the objective function /™ and the histories of the corresponding torsional and distortional rigidities. Note
that the section shown in Fig. 14(c) is indeed a section used in wide bridges. This problem also exemplifies
the significant effects of the distortional rigidity in thin-walled closed beam section design. The use of a
composite-objective function consisting of torsional and distortional rigidities in practical applications is
expected to provide very useful design information.

5. Conclusion

Starting from a higher-order thin-walled closed beam theory, a notion of the distortional rigidity is
introduced. The significant effects of the distortional rigidity in the design of thin-walled closed beam
sections have been revealed by several case studies. In the course of this investigation, a new composite-
objective function considering both the torsional and distortional rigidities for multi-cell sections is also
proposed.
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